On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity and the case of $f(R)$-gravity

Naureen Goheer
University of Cape Town

in collaboration with Rituparno Goswami, Julien Larena, Peter Dunsby & Kishore Ananda, UCT
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Talk based on

- **On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity**
 Naureen Goheer, Rituparno Goswami, Peter K. S. Dunsby, Kishore Ananda,

- **Power-law cosmic expansion in $f(R)$-gravity models**
 Naureen Goheer, Julien Larena, Peter K. S. Dunsby,

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Outline

- Why modify General Relativity?
- Why power-law solutions $a=t^m$?
- Reconstruct $f(G)$ such that it admits cosmologically interesting power-law
- Analogous Reconstruction for $f(R)$ gravity
- Conclude and discuss caveats
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

standard model of cosmology

- if we assume that the universe is dominated by Dark Energy (74%) and Dark Matter (22%), this model fits observational data very well
 - observations of CMB and LSS
 - keep GR and geometry

- shortcomings: dark matter and dark energy unexplained/ not observed directly

- ΛCDM model does not give theoretical explanation \Rightarrow it is more of an empirical fit to data

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

standard model of cosmology

- if we assume that the universe is dominated by Dark Energy (74%) and Dark Matter (22%), this model fits observational data very well
 - observations of CMB and LSS
 - keep GR and geometry

- shortcomings: dark matter and dark energy unexplained/ not observed directly

- ΛCDM model does not give theoretical explanation \Rightarrow it is more of an empirical fit to data

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Standard Cosmology

Key Assumptions:

- General Relativity
- Homogeneity and Isotropy (FRW metric)
- Matter Content (Energy-Momentum tensor): dust+radiation

→ Decelerating universe in violation with observations

Naureen Goheer, University of Cape Town
Standard Cosmology

Accelerating universe

- change one (at least) of the key assumptions:
 - General Relativity
 - modify gravity on relevant scales
 - Homogeneity and Isotropy (FRW metric)
 - inhomogeneous models
 - Matter Content (Energy-Momentum tensor): dust+radiation
 - include more exotic fluids

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Standard Cosmology

Accelerating universe

- change one (at least) of the key assumptions:

 - General Relativity
 - modify gravity on relevant scales

 - Homogeneity and Isotropy (FRW metric)
 - inhomogeneous models

 - Matter Content (Energy-Momentum tensor): dust+radiation
 - include more exotic fluids

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

possible explanations of late time acceleration (DE)

\[G_{ab} = R_{ab} - \frac{1}{2} g_{ab} R = T_{ab} \]

- change geometry (left hand side of field eqs)
- keep GR and modify “matter” content (change right hand side of field eqs)
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

possible explanations of late time acceleration (DE)

\[G_{ab} = R_{ab} - \frac{1}{2} g_{ab} R = T_{ab} \]

- modifications of cosm. thermodynamics (e.g. Chaplygin gas)
- add extra “fields” to 4D GR
 - cosmological constant
 - dynamical quintessence etc

change geometry (left hand side of field eqs)

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

possible explanations of late time acceleration (DE)

\[G_{ab} = R_{ab} - \frac{1}{2} g_{ab} R = T_{ab} \]

- inhomogeneous models
- modify GR on certain scales
 - higher D: brane-world models (Randall-Sundrum, DGP etc)
 - 4D: include higher order terms in action
- modifications of cosm.
 thermodynamics (e.g. Chaplygin gas)
- add extra "fields" to 4D GR
 - cosmological constant
 - dynamical quintessence etc

Naureen Goheer, University of Cape Town
modify GR by generalizing the action:

Higher order gravity

Generalize the Einstein-Hilbert action $A_{EH} = \int d^4x \sqrt{-g} R$
to include higher order curvature invariants:

$R \rightarrow$ function of Ricci scalar and contractions of Ricci tensor and Riemann
tensor: $f(R, R_{ab} R^{ab}, R_{abcd} R^{abcd}, etc)$

- abandon assumption of having second order field eqs (fourth order)
- unique status of GR was questioned by Weyl (1919) and Eddington (1922) by considering higher order invariants in the GR action
- higher order corrections to EH-action necessary to improve renormalizability of gravity (Utiyama, de Witt 1962 and more)

Naureen Goheer, University of Cape Town
Popular Higher order gravity models

Einstein-Hilbert action \(A_{EH} = \int d^4x \sqrt{-g}R \)

- replace \(R \) but some function \(f(R) \): \(A = \int dx^4 \sqrt{-g} f(R) \)

\(f(R) \)-gravity: very popular, good and relatively simple toy model; used in second part of this talk

- include functions of the Gauss-Bonnet curvature invariant \(G \):
 \[
 A = \int d^4x \sqrt{-g}[R + f(G)], \quad G = R^2 - 4R_{\alpha\beta}R^{\alpha\beta} + R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu}
 \]

\(f(G) \)-gravity (main objective here)

- other options?!

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Popular Higher order gravity models

Einstein-Hilbert action \[A_{EH} = \int d^4 x \sqrt{-g} R \]

- **replace R but some function $f(R)$**: \[A = \int dx^4 \sqrt{-g} f(R) \]

 \[f(R) \text{-gravity}: \text{very popular, good and relatively simple toy model; used in second part of this talk} \]

- **include functions of the Gauss-Bonnet curvature invariant G**: \[A = \int d^4 x \sqrt{-g} (R + f(G)), \quad G = R^2 - 4R_{\alpha\beta}R^{\alpha\beta} + R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu} \]

 \[f(G) \text{-gravity} \text{ (main objective here)} \]

- **other options?!**

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Simple example to show mechanism:

\[f(R) = R - \frac{\mu^4}{R} \]

- mass scale \(\mu \propto H_0 \propto 10^{-33} \text{ eV} \)

- high curvature \((R \gg 1)\): 1/R correction **negligible**

- low curvature \((R \rightarrow 0)\): 1/R correction kicks in and gives **late time acceleration**

- ruled out (weak field limit and Dolgov-Kawasaki instability)!

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Requirements for viability

- correct cosmological dynamics (correct expansion history radiation domination -> matter domination -> late time acceleration)

- correct Newtonian / post-newtonian limit (solar system constraints)

- correct perturbations: agree with CMB and LSS

- agree with BBN

- no ghosts / instabilities/ (curvature) singularities

 - model dependent (frame dependent!), but there seem to be successful candidates in both $f(R)$ - and $f(G)$ -gravity

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Requirements for viability

- correct cosmological dynamics (correct expansion history radiation domination \rightarrow matter domination \rightarrow late time acceleration)

- correct Newtonian / post-newtonian limit (solar system constraints)

- correct perturbations: agree with CMB and LSS

- agree with BBN

- no ghosts / instabilities/ (curvature) singularities

 - model dependent (frame dependent!), but there seem to be successful candidates in both $f(R)$ - and $f(G)$ -gravity

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Basic Idea

• look at **various classes of** $f(R)$ - and $f(G)$ - gravity that are popular in literature because they are claimed to be **viable models** (agree with observations, no instabilities, ...)

• construct **dynamical systems** state space and identify **equilibrium points** as physically interesting states of the system

• could **not find equilibrium points corresponding to matter dominated power-law solutions** in various classes of models
Dynamical System example:
FRW state space in GR, perfect fluid, \(\Lambda, k=\pm 1 \)

\[\Omega_k = \frac{3R}{\mathcal{H}^2} \]

\[\Omega_\Lambda = \frac{\Lambda}{\mathcal{H}^2} \]
Einstein Static models if f(R)-gravity

Dynamical System example:
FRW state space in GR, perfect fluid, Λ, $k=\pm 1$

\[
\Omega = 0
\]

\[
\Omega_\Lambda = \frac{\Lambda}{H^2}
\]

\[
\Omega_k = \frac{3R}{H^2}
\]

Naureen Goheer, University of Cape Town
Dynamical System example:
FRW state space in GR, perfect fluid, Λ, $k=\pm 1$

- Friedman model $a=t^{2/3(1+w)}$: past attractor

\[\Omega_k = \frac{3R}{H^2} \]

Naureen Goheer, University of Cape Town
Dynamical System example:
FRW state space in GR, perfect fluid, Λ, $k=\pm 1$

- Friedman model $a=t^{2/(3(1+w))}$: past attractor
- deSitter model $a=e^{\Lambda t}$: future attractor

$\Omega_k = \frac{3R}{H^2}$

$\Omega_\Lambda = \frac{\Lambda}{H^2}$

Naureen Goheer, University of Cape Town
Einstein Static models if f(R)-gravity

Dynamical System example:
FRW state space in GR, perfect fluid, Λ, $k=\pm 1$

- Friedman model $a=t^{2/3(1+w)}$: past attractor
- deSitter model $a=e^{\Lambda t}$: future attractor
- integrate perturbation eqs along trajectory

$\Omega_k = \frac{3R}{H^2}$

$\Omega_\Lambda = \frac{\Lambda}{H^2}$

Naureen Goheer, University of Cape Town
Basic Idea

- Look at various classes of $f(R)$ - and $f(G)$ - gravity that are popular in literature because they are claimed to be viable models (agree with observations, no instabilities, ...)

- Construct dynamical systems state space and identify equilibrium points as physically interesting states of the system

- Could not find equilibrium points corresponding to matter dominated power-law solutions in various classes of models

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

why power-law solutions?

- at early times, the universe was radiation and matter dominated, and the scale factor scaled like $a = a_0 \, t^{1/2}$, $a = a_0 \, t^{2/3}$

- in GR, there exists the exact power-law solution $a = a_0 \, t^{2/3(1+w)}$, which then justifies looking at the perturbed solution \rightarrow structure growth

- if there is no such asymptotic solution in the modified gravity of interest, one has to be very careful about which background to consider for perturbation theory

Naureen Goheer, University of Cape Town
Simple Example: R^n-gravity

<table>
<thead>
<tr>
<th>Point</th>
<th>Coordinates (x, y, z)</th>
<th>Scale Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$[0, 0, 0]$</td>
<td>$a = a_0(t - t_0)$</td>
</tr>
<tr>
<td>B</td>
<td>$[-1, 0, 0]$</td>
<td>$a = a_0(t - t_0)^{1/2}$ (only for $n = 3/2$)</td>
</tr>
<tr>
<td>C</td>
<td>$\left[\frac{2(n-2)}{2n-1}, \frac{4n-5}{2n-1}, 0\right]$</td>
<td>$a = a_0 \left(\frac{1-n(2n-1)}{n^2}\right)$</td>
</tr>
</tbody>
</table>
| D | $[2(1-n), 2(n-1)^2, 0]$ | $\begin{cases}
a = \frac{kt}{2n^2-2n-1} & \text{if } k \neq 0 \\
0 & \text{if } k = 0
\end{cases}$ |
| E | $[-1 - 3\omega, 0, -1 - 3\omega]$ | $a = a_0(t - t_0)$ |
| F | $[1 - 3\omega, 0, 2 - 3\omega]$ | $a = a_0(t - t_0)^{1/2}$ (only for $n = 3/2$) |
| G | $\left[-\frac{3(n-1)(1+\omega)}{n}, \frac{(n-1)[4n-3(\omega+1)]}{2n^2}, \frac{n(13+9\omega)-2n^2(4+3\omega)-3(1+\omega)}{2n^2}\right]$ | $a = a_0 \left(\frac{2n}{3(1+\omega)}\right)$ |

- **evolve density perturbations for exact solution (or along the orbit)**
- **generalize to other $f(R), f(G)$**
Basic Idea

- could **not find equilibrium points** in the dynamical systems corresponding to **matter dominated power-law models** in various classes of $f(R)$- and $f(G)$-gravity
 - these points represent **asymptotic/intermediate states** in the full state space of possible cosmological evolutions (--- solutions interpolating between matter domination and acceleration)
 - important as **backgrounds for perturbations**

- go **back to the basic field equations** and assume there exists a power-law solution
 - in each case, ones gets very strong **restrictions** on the form of f
 - in $f(G)$-gravity there is an **additional complication** that may make this type of modified gravity less attractive than $f(R)$-gravity

Naureen Goheer, University of Cape Town
why $f(G)$-gravity?

- motivated by low-energy effective string theory (Nojiri & Odintsov 2006)?
 - ST ‘naturally predicts occurrence of terms with inverse powers in curvature invariants in low energy effective action’
 - in ‘string induced gravity’, terms of the Gauss-Bonnet term G coupled to a scalar field ϕ in the action may help obtain a non-singular cosmology
 - dropping kinetic term in action can be interpreted as $f(G)$ in action

- can possibly give late-time acceleration without cosmological constant and simultaneously pass solar system constraints (might be less constrained by local gravity tests compared to $f(R)$, Sotiriou 2007)

- ghosts may be avoided under certain conditions (De Felice et al 2006)

- could be promising candidates for cosmology, study expansion history!

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

$f(G)$ field equations

- **Action** for 4-dimensional **homogeneous isotropic** backgrounds:

\[A = \int d^4x \sqrt{-g} \left[R + f(G) + \mathcal{L}_m \right], \quad G = R^2 - 4R_{\alpha\beta}R^{\alpha\beta} + R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu} \]

- we know that in 4 dimensions, G is a total differential, and field equations are invariant if we add terms linear in G

- **varying with respect to the metric** gives

\[G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} R = \kappa^2 \left(T^m_{\alpha\beta} + T^G_{\alpha\beta} \right), \text{ where } T^M_{\alpha\beta} = \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_m)}{\delta g_{\alpha\beta}} \]

- treat fourth order gravity as **GR with 2 effective fluids**!

- unlike in $f(R)$, standard matter decouples from curvature corrections!

- curvature “fluid” moving relative to standard matter, no perfect fluid!:

\[T^G_{\mu\nu} = -8 \left[R_{\mu\rho\nu\sigma} + R_{\rho\nu}g_{\sigma\mu} - R_{\rho\sigma}g_{\mu\nu} - R_{\mu\nu}g_{\rho\sigma} + R_{\mu\sigma}g_{\nu\rho} \right] \]

\[\quad + \frac{R}{2} \left(g_{\mu\nu}g_{\rho\sigma} - g_{\mu\sigma}g_{\nu\rho} \right) \nabla^\rho \nabla^\sigma G + (f - Gf_G) g_{\mu\nu}, \]

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

$f(G)$ field equations for FRW backgrounds

As usual, define the **scale factor** (volume expansion) $\Theta = \frac{\dot{a}}{a} = 3H$

- **Raychaudhuri**: $\dot{\Theta} + \frac{1}{3} \Theta^2 = -\frac{\kappa^2}{2} (\rho + 3P) + \frac{4}{9} \Theta^3 f_{g\dot{g}} \dot{G} - (f - G f_g) - \frac{3}{\Theta} g \dot{f}_g - \frac{4}{3} \Theta^2 \ddot{f}_g$

- **Friedman**: $\Theta^2 = 3\kappa^2 \rho + 3G f_g - \frac{8}{3} \Theta^3 f_{g\dot{g}} \dot{G} - 3f$

- **total trace**: $-4\Theta^2 - 6\dot{\Theta} = 3\kappa^2 (3P - \rho) + 12 (f - G f_g) + \frac{8}{3} \Theta^3 f_{g\dot{g}} \dot{G} + \frac{18}{\Theta} G \dot{f}_g + 8\Theta^2 \ddot{f}_g$

where for n=1,2 we abbreviate $f_{ng} = \frac{\partial^n f}{(\partial G)^n}$

- **energy conservation** eq. for standard matter: $\dot{\rho} = -\Theta (\rho + P)$

- for FRW spacetimes, the GB-term becomes: $\mathcal{G} = \frac{8}{9} \Theta^2 \left[\dot{\Theta} + \frac{1}{3} \Theta^2 \right] = 24 \frac{\dot{a}^2 \ddot{a}}{a^3}$

 - note that $\mathcal{G} < 0$ for **deceleration** and $\mathcal{G} > 0$ for **acceleration**

Naureen Goheer, University of Cape Town
Requirements for the existence of power-law solutions

• assume there exists an **exact** power-law (PL) solution \(a = a_0 t^m \)

• \(m \) is from now on fixed;

 ‣ \(0 < m < 1 \): the PL solution is **decelerating**
 ‣ \(m > 1 \): the PL solution is **accelerating**

• from energy conservation we get \(\rho = \rho_0 \, t^{-3m(1+w)} \)

• Gauss-Bonnet term becomes \(G = 24 \, m^2 \, (m-1) \, t^{-4} = \alpha_m \, t^{-4} \)

 ‣ \(G < 0 \): the PL solution is **decelerating**
 ‣ \(G > 0 \): the PL solution is **accelerating**

• can **invert** GB term to **get** \(t \) as a function of \(G \) (assume \(t > 0 \))
If power-law solution exists we can...

- insert PL solution $a = a_0 t^m$ into the 3 independent field equations

- replace time t by G to get linear differential eqs for $f(G)$ in G-space; the Friedman eq. e.g. becomes

$$
\frac{96m^3}{\alpha_m} f_{gg} G^2 + f_g G - f - 3m^2 \sqrt{\frac{G}{\alpha_m}} + K \left(\frac{G}{\alpha_m} \right)^{\frac{3}{4}} m(1+w) = 0,
$$

where $K = \rho_0 a_0^{3(1+w)}$, $\alpha_m = 24m^3(m-1)$

- general solution:

$$
f(G) = A_m \sqrt{\tilde{G}} + B_{mw} \tilde{G}^{\frac{3}{4}} m(1+w) + C_1 G + C_2 G^{\frac{1}{4}} - \frac{m}{4}, \quad \tilde{G} = 24G/\alpha_m
$$

 - in particular, many of the popular $f(G)$ models (e.g. de Felice et al, 2009) cannot admit any exact PL solution

- set $C_1=C_2=0$ because of GB-invariance and to get GR limit respectively

- A_m, B_{mw} real-valued and non-zero unless $m=1$

- this solution satisfies the other field equations!

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Co-existence of decelerating PL solution and ANY accelerating solutions

• assume an **exact decelerating PL solution exists**
 - $m < 1$, $\alpha_m < 0$ **fixed** numbers

• from above we know that then $f(G)$ HAS TO BE of the form
 $$f(G) = A_m \sqrt{\tilde{G}} + B_{mw} \tilde{G}^{\frac{3}{4}m(1+w)} \cdot \tilde{G} \equiv 24G/\alpha_m > 0$$

• if any **additional accelerating** solution exists, it has by definition $G > 0$
 - $f(G)$ not real-valued!!

• introduce absolute values to “fix” problem: $\tilde{f}(G) = A_m \sqrt{|\tilde{G}|} + B_{mw} |\tilde{G}|^{\frac{3}{4}m(1+w)}$
 - function **not differentiable** at $G=0 \rightarrow$ not C^2 as required for action

• no C^2-action in $f(G)$-gravity can allow for exact decelerating power-law solution to coexist with ANY accelerating solution

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

The $f(R)$ analogue

• generalize the Einstein-Hilbert action to

\[A = \int dx^4 \sqrt{-g} \, f(R) + \int dx^4 \sqrt{-g} \, \mathcal{L}_m \]

• relatively simple, but has the nice feature of admitting late time accelerating models (alternative to DE)

• may or may not comply with observational constraints (model dependent, some successful models at the least)

• **varying with respect to the metric** gives the field equations:

Naureen Goheer, University of Cape Town
The $f(R)$ analogue: Basic field equations

- Raychaudhuri:
 \[\dot{\Theta} + \frac{1}{3} \Theta^2 = -\frac{1}{2f'} \left[\rho + 3P + f - f'R + \Theta f'' \ddot{R} + 3f''' \dot{R}^2 + 3f'' \dddot{R} \right] \]

- Friedman:
 \[\Theta^2 = \frac{3}{f'} \left[\rho + \frac{R f' - f}{2} - \Theta f'' \dot{R} \right] \]

- total trace:
 \[3\ddot{R} f'' = \rho - 3P + f' \dot{R} - 2f - 3\Theta f'' \ddot{R} - 3f''' \dot{R}^2 \]

where a prime denotes a derivative with respect to R

- energy conservation:
 \[\dot{\rho} = -\Theta (\rho + P) \] both acceleration and deceleration can occur for $R > 0$

- combine above:
 \[R = 2\dot{\Theta} + \frac{4}{3} \Theta^2 \]

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Requirements for the existence of exact power-law solutions in $f(R)$

- assume again that there exists an exact power-law (PL) solution $a = a_0 t^m$
 - $0 < m < 1$: the PL solution is decelerating
 - $m > 1$: the PL solution is accelerating

- as in the $f(G)$ case, the energy conservation yields $\rho = \rho_0 t^{-3m(1+w)}$

- instead of Gauss-Bonnet term we get $R = 6m (2m-1) t^2 = \alpha_m t^{-2}$
 - Unlike in the $f(G)$ analogue, both accelerating and decelerating solutions can have $R > 0$ (as long as $m > 1/2$).

- invert R to get t as a function of R (assume $t > 0$), insert PL solution $a = a_0 t^m$ into the 3 independent field equations and replace time t by R to get linear differential eqs for $f(R)$ in R-space

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Requirements for the existence of exact power-law solutions in $f(R)$

- the **Friedman** eq. e.g. becomes

$$f''R^2 + \frac{m - 1}{2} f'R + \frac{1 - 2m}{2} f + (2m - 1)K \left(\frac{R}{\alpha_m}\right)^{\frac{3}{2}m(1+w)} = 0,$$

where $K = \rho_0\alpha_0^{3(1+w)}$, $\alpha_m = 6m(2m - 1)$

- **general solution:**

$$f(R) = A_{mw} \left(\frac{R}{\alpha_m}\right)^{\frac{3}{2}m(1+w)} + C_1 R^{\frac{3}{4} - \frac{m}{4} + \frac{\sqrt{\beta_m}}{4}} + \frac{2}{\sqrt{\beta_m}} C_2 R^{\frac{3}{4} - \frac{m}{4} - \frac{\sqrt{\beta_m}}{4}},$$

where $\beta_m = 1 + 10m + m^2$

- A_{mw} **real-valued and non-zero** unless $m=1/2$ or $w = \frac{3 - 7m \pm \sqrt{\beta_m}}{6m}$

- this solution **satisfies the other field equations**!

- if we want GR limit for $m=2/(3(1+w))$ we have to set $C_1=C_2=0$

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

this means...

- **exact** power-law solution solution only exists for

$$f(R) = A m w \left(\frac{R}{\alpha m} \right)^{ \frac{3}{2} m (1+w) } + C_1 R^{ \frac{3}{4} - \frac{m}{4} + \frac{\sqrt{\beta_m}}{4} } + \frac{2}{\sqrt{\beta_m}} C_2 R^{ \frac{3}{4} - \frac{m}{4} - \frac{\sqrt{\beta_m}}{4} },$$

where $\beta_m = 1 + 10m + m^2$

- actions including terms such as $R + \alpha F(R)$ (e.g. $f(R)=R+R/(1+A R)$ as studied by Hu et al) cannot have **exact** power-law solutions

- re-write the solution for $f(R)$ as

$$f(R) = B m w R^n, \text{ where } n \equiv \frac{3}{2} m (1+w), \quad C_1 = C_2 = 0$$

 - recover the well-known result that R^n-**gravity** allows for an **exact** Friedman like power-law solution $a=a_0 t^{2n/(3(1+w))}$

Naureen Goheer, University of Cape Town
Simple Example: R^n-gravity

<table>
<thead>
<tr>
<th>Point</th>
<th>Coordinates (x, y, z)</th>
<th>Scale Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$[0, 0, 0]$</td>
<td>$a = a_0(t - t_0)$</td>
</tr>
<tr>
<td>B</td>
<td>$[-1, 0, 0]$</td>
<td>$a = a_0(t - t_0)^{1/2}$ (only for $n = 3/2$)</td>
</tr>
<tr>
<td>C</td>
<td>$\left[\frac{2(n-2)}{2n-1}, \frac{4n-5}{2n-1}, 0\right]$</td>
<td>$a = a_0 t^{(1-n)(2n-1)/n-2}$</td>
</tr>
<tr>
<td>D</td>
<td>$[2(1-n), 2(n-1)^2, 0]$</td>
<td>$\left{ \begin{array}{l} a = \frac{kt}{2n^2-2n-1} \quad \text{if} \quad k \neq 0 \ a = a_0 t \quad \text{if} \quad k = 0 \end{array} \right.$</td>
</tr>
<tr>
<td>E</td>
<td>$[-1 - 3\omega, 0, -1 - 3\omega]$</td>
<td>$a = a_0(t - t_0)$</td>
</tr>
<tr>
<td>F</td>
<td>$[1 - 3\omega, 0, 2 - 3\omega]$</td>
<td>$a = a_0(t - t_0)^{1/2}$ (only for $n = 3/2$)</td>
</tr>
<tr>
<td>G</td>
<td>$\left[-\frac{3(n-1)(1+\omega)}{n}, \frac{(n-1)(4n-3(\omega+1))}{2n^2}, \frac{n(13+9\omega)-2n^2(4+3\omega)-3(1+\omega)}{2n^2}\right]$</td>
<td>$a = a_0 t^{2n/(3(1+\omega))}$</td>
</tr>
</tbody>
</table>

\implies evolve density perturbations for exact solution (or along the orbit)

\implies generalize to other $f(R), f(G)$

$S = S_0 t^{\frac{(1-n)(2n-1)}{n-2}}$

$1.36 < n < 1.5$

$S = S_0 t^{\frac{2n}{3(1+w)}}$
Comparison between $f(G)$- and $f(R)$-gravity

\[G = \frac{8}{9} \Theta^2 \left[\dot{\Theta} + \frac{1}{3} \Theta^2 \right] = 24 \frac{\dot{a}^2 \ddot{a}}{a^3} \]

• models transitioning from deceleration to acceleration must pass through $G=0$
 ▸ functions like $f(G) = G^n (n<1)$ problematic for cosmologically viable trajectories

\[R = 2 \dot{\Theta} + \frac{4}{3} \Theta^2 \]

• they must not pass through $R=0$
 ▸ function like $f(R) = R^n (n<1)$ well-defined for at least some cosmologically viable trajectories

• example R^n:
 ▸ matter dominated phase coexists with dS-like solution, and can be linked without passing through $R=0$
 ▸ not differentiable at $R=0$, but any solution can only asymptotically approach this plane from either side of 0

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Scalar field analogy for $f(R)$ case

- **reconstruct the effective scalar field** (often done to describe the dynamics of $f(R)$ gravity models)

- has been argued that $f(R)$ theories suffer from a singularity problem (Frolov 2008):
 - **at finite time** the dynamics drives the model towards **infinite values of the curvature** corresponding to points in the scalar field potential attainable for finite values of the scalar field
 - effective potential of the models are **multi-valued** (very unnatural feature)

- we will show that the models that lead to power-law solutions do **not suffer from such pathological behaviors**, but admit a well-defined scalar field representation with a single-valued potential and no curvature singularity.

Naureen Goheer, University of Cape Town
On the co-existence of matter dominated and accelerating solutions in $f(G)$-gravity

Scalar field analogy

- adopt the scalar field representation defined by

$$
\phi = \frac{df(R)}{dR} - 1 ,
$$

$$
\frac{dV}{dR} = \frac{1}{3} \left(2f(R) - \frac{df}{dR} R \right) \frac{d^2 f}{dR^2} .
$$

- can obtain scalar field potential for the $f(R)$ that has exact power-law solution as shown above:

$$
f(R) = A_{mw} \left(\frac{R}{\alpha_m} \right)^{\frac{3}{2}m(1+w)} + C_1 R^{\frac{3}{4} - \frac{m}{4} + \frac{\sqrt{\beta_m}}{4}} + \frac{2}{\sqrt{\beta_m}} C_2 R^{\frac{3}{4} - \frac{m}{4} - \frac{\sqrt{\beta_m}}{4}} ,
$$

where $\beta_m = 1 + 10m + m^2$

Naureen Goheer, University of Cape Town
Reconstructed scalar field potential

\[f(R) = A_{m,w} \left(\frac{R}{\alpha_m} \right)^{\frac{3}{2} m(1+w)} + C_1 R^{\frac{3}{4} - \frac{m}{2} + \sqrt{\frac{\sigma_m}{4}}} + \frac{2}{\sqrt{\beta_m}} C_2 R^{\frac{3}{4} - \frac{m}{2} - \sqrt{\frac{\sigma_m}{4}}}, \]

where \(\beta_m = 1 + 10m + m^2 \)

- \(n = \frac{3m(1+w)}{2} > 1 \)
 - shape of potential does not depend on \(C_1, C_2 \) and \(w \)
 - scalar field rolls down potential and asymptotically freezes at \(\phi = -1 \)
- \(n = \frac{3m(1+w)}{2} < 1 \)
 - shape of potential depends on \(C_1, C_2 \), but scalar field still drives \(V \) towards constant value at late times

Naureen Goheer, University of Cape Town
Scalar field analogy

- reconstructed scalar field well-behaved

 - effective potential single-valued
 - no curvature singularity
 - scalar field potential asymptotically freezes at finite value
Conclusion

• in both $f(G)$- and $f(R)$-gravity, the existence of an exact power-law solution restricts the function f to one class of models
 ‣ same is true for other simple forms of scale factor evolution $a(t)$

• in $f(G)$-gravity, an exact decelerating power-law solution can not co-exist with ANY accelerating solutions for a C^2-function $f(G)$
 ‣ less promising than $f(R)$ models for cosmologically viable expansion histories?
 ‣ concentrate on functions $f(G)$ that are C^2 (and in particular differentiable at $G=0$) or ignore the level of the action?

⇒ the requirement for an exact PL solution to exist may be too stringent?
 ‣ in ΛCDM, matter dominated $a=t^{2/3}$ exact solution for $\Lambda<<H^2$
 ‣ numerically, matter dominated phases were found? approximations? generic?

⇒ provide a formalism to reconstruct the function f given a simple expansion history

⇒ in $f(R)$-gravity, R^n-gravity is very special: generically allows for exact power-law solutions in the non-GR limit (even for e.g. $n=2$)
Matter Power spectrum in R^n-gravity (Ananda et al)

- On **large** and **small** scales the spectrum is scale-invariant, but **Oscillations** can occur around a specific value of k depending on parameter “n”.

- in contrast to results obtained using **approximation** schemes (**no exact solutions**): increased power at small scales and no oscillations

- inconsistencies with exact formalism, or R^n just very special? \rightarrow need to test approximation schemes!
On large and small scales the spectrum is scale-invariant, but Oscillations can occur around a specific value of k depending on parameter “n”.

In contrast to results obtained using approximation schemes (no exact solutions): increased power at small scales and no oscillations.

Inconsistencies with exact formalism, or R^n just very special? -> need to test approximation schemes!
On large and small scales the spectrum is scale-invariant, but Oscillations can occur around a specific value of k depending on parameter “n”.

In contrast to results obtained using approximation schemes (no exact solutions): increased power at small scales and no oscillations.

Inconsistencies with exact formalism, or R^n just very special? -> need to test approximation schemes!
On large and small scales the spectrum is scale-invariant, but Oscillations can occur around a specific value of k depending on parameter “n”.

in contrast to results obtained using approximation schemes (no exact solutions): increased power at small scales and no oscillations

inconsistencies with exact formalism, or \(R^n \) just very special? -> need to test approximation schemes!
Effect of fourth order gravity evident only around a specific value of k.

- On large and small scales the spectrum is scale-invariant, but Oscillations can occur around a specific value of k depending on parameter “n”.

- In contrast to results obtained using approximation schemes (no exact solutions): increased power at small scales and no oscillations.

- Inconsistencies with exact formalism, or R^n just very special? -> need to test approximation schemes!
Thank you!
Caveats

- we have assumed there exists an **exact decelerating PL solution**

 - if \(a = a_0 e^{nt} t^m \) or \(a = a_0 t^m + a_1 t^n \) then at early times \(a = a_0 e^{nt} t^m \) but the basic assumption of our analysis is not satisfied

 - in this case, \(f \) could be of a much more complicated form, and in the limit of early or late times, \(f \) may or may not (non-linearities) scale like the class of \(f \) obtained above
The Power Spectrum for R^n-gravity ($n>1$)
The Power Spectrum for R^n-gravity ($n>1$)